[1:80] Российский квантовый симулятор МФТИ впервые за два часа решил сложную физическую задачу. На ее просчет обычный суперкомпьютер потратил около недели
Физики из России впервые использовали квантовый симулятор, аналоговое вычислительное устройство, для быстрого решения сложной физической задачи, на просчет которой обычный суперкомпьютер потратил около недели. Об этом во вторник сообщила пресс-служба МФТИ со ссылкой на статью в журнале Physical Review Letters.
«Ранние квантовые симуляторы из-за своих несовершенств часто сталкивались с проблемой несоответствия объекту симуляции. В этом контексте скептики говорили, что эти машины симулируют исключительно сами себя. Мы же не пытались заставить систему работать против своей природы, а нашли физическую задачу — просчет поведения фотонов в модели Бозе-Хаббарда, максимально использующую ее внутренние возможности», — сказал аспирант МФТИ Глеб Федоров, чьи слова приводит пресс-служба вуза.
Модель Бозе-Хаббарда можно применять для описания множества процессов в квантовом мире, в том числе и тех, которые происходят в квантовых компьютерах. По этой причине ее экспериментальная проверка постоянно привлекает внимание ученых, что осложняется тем, что объем вычислений экспоненциально растет по мере увеличения числа взаимодействующих объектов.
Это, как отмечают ученые из МФТИ, НИТУ «МИСиС», Российского квантового центра, МГТУ имени Баумана и ВНИИА имени Духова, не является проблемой для квантового симулятора. Работу его кубитов можно настроить таким образом, что они будут вести себя так, как это должны делать фотоны или другие бозоны внутри модели Бозе-Хаббарда, это позволяет использовать ее на практике, просчитывая поведение большого числа частиц за относительно короткое время.
Руководствуясь подобными соображениями, ученые проверили, можно ли использовать российский квантовый симулятор, построенный на базе пяти сверхпроводящих кубитов, для решения этой физической задачи. Как оказалось, даже этой достаточно простой квантовой системы волне хватает для того, чтобы максимально точно просчитывать взаимодействия частиц света, потратив на это всего два часа времени. Для сравнения, суперкомпьютер, установленный на территории ВНИИА имени Духова, потратил на проверку результатов квантовых вычислений около недели, используя все вычислительные ресурсы его 138 узлов. Эта проверка показала, что результат квантовой симуляции полностью соответствовал тому, что предсказывает теория.
В ближайшем будущем профессор Устинов и его коллеги планируют создать еще более сложные квантовые симуляторы. Эти устройства, как надеются ученые, помогут им проверить другие предсказания теоретиков. Кроме того, в далекой перспективе они помогут российским ученым достичь так называемого «квантового превосходства» — решить задачу, которую в принципе нельзя просчитать при помощи обычного компьютера.
Квантовые компьютеры
Квантовыми компьютерами называют особые вычислительные устройства, чья мощность растет экспоненциальным образом благодаря применению принципов квантовой механики в их работе. Они состоят из так называемых кубитов, ячеек памяти и примитивных вычислительных модулей, способных хранить в себе одновременно и ноль, и единицу.
Сегодня существует два подхода к разработке подобных устройств — классический и адиабатический. В первом случае ученые пытаются создать так называемый универсальный квантовый компьютер, похожий по принципам работы на обычные цифровые вычислительные машины. Адиабатический компьютер проще создать, но он ближе по принципам своей работы к аналоговым компьютерам начала XX века, созданных для решения одной конкретной проблемы и при этом имеющим массу ограничений в работе.
Федоров и его коллеги, работавшие под руководством Алексея Устинова, заведующего лабораторией квантовых метаматериалов в НИТУ «МИСиС», разработали подобный аналоговый вычислитель, состоящий из пяти тесно связанных сверхпроводящих кубитов и предназначенный для решения сложной физической задачи — просчета модели Бозе-Хаббарда.
Это теоретическое построение было разработано еще в середине прошлого столетия для описания того, как будут взаимодействовать друг с другом фотоны или другие квантовые объекты, относящиеся к числу бозонов, частиц с целым значением спина. В их число входят не только фотоны и знаменитый бозон Хиггса, но и ряд атомов с четным числом протонов и нейтронов, а также некоторые элементарные частицы и квазичастицы.
Ученые из МФТИ, МИСиС, РКЦ, МГТУ и ВНИИА провели эксперимент, в котором сверхпроводниковые кубиты симулировали передачу фотонов в модели Бозе — Хаббарда. Численное решение модели на классическом компьютере для проверки экспериментальных данных, полученных на симуляторе за два часа, заняло около недели на 138-ядерном вычислительном кластере ВНИИА имени Духова.
источник: naked-science.ru
Работа опубликована в журнале Physical Review Letters. Сегодня в мировом научном сообществе выделилось два направления разработки квантовых вычислителей: универсальные квантовые компьютеры, которые смогут выполнять специализированные алгоритмы во много раз быстрее, чем классические аналоги, и квантовые симуляторы, которые создаются специально для решения конкретных задач подобно интегральным схемам специального назначения (ASIC).
Реализация универсальных вычислителей — гораздо более сложная инженерная задача, так как требуется обязательно делать алгоритмы коррекции ошибок. Для симуляторов же главное — соответствие физической системе, для которой они создаются. В разработке сейчас много различных типов кубитов. Доминирующую роль в квантовых вычислителях занимают сверхпроводящие кубиты-трансмоны. Многими теоретическими и несколькими экспериментальными работами было показано, что массивы кубитов-трансмонов хорошо подходят и для создания квантовых симуляторов с целью решения проблем физики конденсированного состояния, расчетов макроскопических и микроскопических свойств веществ.
В новом исследовании, проведенном российскими учеными, впервые показано, что линейные массивы сверхпроводящих кубитов-трансмонов могут симулировать передачу фотонов для изучения перехода «сверхпроводник — изолятор» в модели Бозе — Хаббарда. Причем для этого потребовалась сравнительно простая архитектура: подключение кубитов к микроволновым волноводам и проведение прямой спектроскопии пропускания. Эксперимент показал, как именно сверхпроводниковые симуляторы могут помочь решать задачи материаловедения и исследовать не встречающиеся в естественной природе фазы вещества (например, сверхтекучие).
Глеб Федоров, аспирант МФТИ, соавтор работы, говорит: «Наш результат — это пример простого решения сложной проблемы. Ранние квантовые симуляторы из-за своих несовершенств часто сталкивались с проблемой несоответствия объекту симуляции. В этом контексте скептики говорили, что симуляторы симулируют исключительно сами себя. Мы же не пытались заставить систему работать против своей природы, а наоборот нашли физическую задачу, максимально использующую ее внутренние возможности».
Численное решение модели на классическом компьютере для проверки экспериментальных данных, полученных за два часа, заняло около недели на 138-ядерном вычислительном кластере ВНИИА имени Духова и показало блестящее соответствие между теорией и измерениями.
Этот результат, полученный всего лишь на пяти кубитах-трансмонах, показывает, что разработка систем с большим числом кубитов позволит наблюдать поведение моделей, сложность расчета которых лежит далеко за пределами большинства суперкомпьютеров. Стоит признать, что методы расчета непрерывно совершенствуются, но можно с уверенностью сказать, что простота масштабирования квантовых симуляторов и экспоненциальный рост их производительности с числом кубитов дают им существенное преимущество.
Проведенное исследование открывает новые горизонты как в области применения квантовых симуляторов, так и в квантовой оптике многочастичных квантовых систем, продолжая успешные совместные исследования лаборатории искусственных квантовых систем МФТИ и лаборатории сверхпроводящих метаматериалов МИСиС. Ученые надеются, что дальнейшее сотрудничество позволит разработать, изготовить и исследовать более крупные системы кубитов с необычными свойствами, которые сейчас предсказаны только в теоретических работах.
Рисунок 1. Оптическая фотография устройства (вверху, в ложном цвете) и схема эквивалентной физической модели с бозонами, пойманными в периодический потенциал (внизу)
Ученые из МФТИ, МИСиС, РКЦ, МГТУ и ВНИИА провели эксперимент, в котором сверхпроводниковые кубиты симулировали передачу фотонов в модели Бозе — Хаббарда. Эта модель используется в физике для описания перехода «сверхпроводник — изолятор» и в общем случае не интегрируема, что делает ее особенно интересной в качестве полигона для проверки прототипов квантовых вычислителей. Работа опубликована в журнале Physical Review Letters.
Сегодня в мировом научном сообществе выделилось два направления разработки квантовых вычислителей: универсальные квантовые компьютеры, которые смогут выполнять специализированные алгоритмы во много раз быстрее, чем классические аналоги, и квантовые симуляторы, которые создаются специально для решения конкретных задач подобно интегральным схемам специального назначения (ASIC). Так как в первом случае требуется обязательно применять алгоритмы коррекции ошибок, реализация универсальных вычислителей является гораздо более сложной инженерной задачей; для симуляторов же проблемы заключаются скорее в достижении соответствия физической системе, для которой они создаются.
Многими теоретическими и несколькими экспериментальными работами было показано, что массивы кубитов-трансмонов хорошо подходят для изучения свойств модели Бозе — Хаббарда, что делает их интересным инструментом не только для разработки квантовых процессоров, где этот тип кубитов играет сейчас доминирующую роль, но и для создания квантовых симуляторов с целью решения проблем физики конденсированного состояния.
В новом исследовании, проведенном российскими учеными, впервые показано, что линейные массивы трансмонов могут использоваться для изучения спектров модели Бозе — Хаббарда в сравнительно простой архитектуре: путем подключения их к микроволновым волноводам и проведения прямой спектроскопии пропускания. В такой схеме симулятор воспроизводит динамику нелинейного квантового кристалла в неравновесном диссипативном режиме, который до этого изучался лишь теоретически.
В работе были исследованы многофотонные переходы к многочастичным состояниям с четырьмя возбуждениями из пяти возможных для исследованной цепочки, что является текущим рекордом в таких системах. Численное решение модели на классическом компьютере для проверки экспериментальных данных, полученных за два часа, заняло около недели на 138-ядерном вычислительном кластере ВНИИА им. Духова и показало блестящее соответствие между теорией и измерениями. Этот результат, полученный всего лишь на пяти трансмонах, показывает, что разработка систем с большим числом кубитов позволит наблюдать поведение моделей, сложность расчета которых лежит далеко за пределами большинства суперкомпьютеров. Стоит признать, что методы расчета непрерывно совершенствуются, но можно с уверенностью сказать, что простота масштабирования квантовых симуляторов и экспоненциальный рост их производительности с числом кубитов дают им существенное преимущество.
источник: zanauku.mipt.ru
Рис. 2. (а) Данные пропускания, содержащие полную информацию об амплитуде и фазе прошедшего сигнала. (б) Сравнение экспериментальных данных (слева) и расчета (справа) при увеличении мощности накачки. (в) Структура энергетических уровней в системе и их физический смысл