Зависит от России. Ученые назвали металл будущего

отметили
30
человек
в архиве
Зависит от России. Ученые назвали металл будущего
6 июн — РИА Новости, Владислав Стрекопытов. Новое поколение сверхпроводников, которые так нужны во многих высокотехнологичных отраслях, будет на основе соединений палладия, сообщают исследователи. России это выгодно — в стране большая часть мировых запасов этого редкого и дорогого металла, а также почти половина всей его добычи.
Нулевое сопротивление
В 1911-м голландский физик Камерлинг-Оннес обнаружил, что электрическое сопротивление твердой ртути при охлаждении в жидком гелии до 4,1 Кельвина (минус 269 градусов Цельсия) резко падает до нуля. Это был первый официально зафиксированный случай сверхпроводимости.
Вскоре выявили еще несколько сверхпроводников. Температура перехода (Тс) у всех была экстремально низкой, близкой к абсолютному нулю.В 1986-м сотрудники научного подразделения корпорации IBM Карл Мюллер и Георг Беднорц открыли материал с Тс в 30 Кельвинов — купрат лантана и бария. Им присудили за это Нобелевскую премию по физике.
Главная гонка современной физики
В промышленности приборы и провода охлаждают жидким азотом, который закипает при 77 Кельвинах. Сверхпроводники с Тс выше этого значения называют высокотемпературными (ВТСП).
В 1990-х получили целый ряд соединений из группы купратов с Тс 130-150 Кельвинов. Самый известный — BSCCO, или, как его называют физики, «биско», состоящий из слоев оксидов висмута, стронция, меди и чистого кальция.
ВТСП уже применяют в системах передачи энергии без потерь, бесконтактных высокоскоростных поездах, сверхсильных магнитах для ускорителей и термоядерных реакторах, суперпроизводительных микрочипах, сверхточных аппаратах медицинской диагностики, двигателях для межпланетных космических кораблей. Из BSCCO, например, сделаны десятки километров проводов в Большом адронном коллайдере в ЦЕРН.
За все более высокотемпературными сверхпроводниками развернулась настоящая гонка. Сверхпроводимость при комнатной температуре и обычных давлениях могла бы в корне изменить технологии, энергетику. Однако пока ни одного такого соединения не нашли.
Купраты, никелаты
Купраты — это сложные соединения на основе оксидов меди, в обычных условиях практически не проводящие электрический ток, то есть изоляторы.
Их выделили в отдельную группу «странных металлов», или сверхпроводящих полуметаллов. Считается, что для описания поведения электронов в них нужно применять квантовые принципы, некоторые исследователи даже видят в купратах особое состояние материи.
Физики Корнельского университета и Института Флэтайрон в Нью-Йорке в 2020-м с помощью квантовых вычислений построили цифровую модель «странных металлов», показав, что купраты — это нечто среднее между классическими металлами с подвижными электронами и диэлектриками, в которых электроны занимают фиксированные позиции.
В 1999-м российский ученый Владимир Анисимов с коллегами предположил, что никелаты — комплексные соединения на основе оксида никеля — также могут обладать высокотемпературной сверхпроводимостью. Действительно, впоследствии обнаружили несколько никельсодержащих ВТСП.
Одно время даже говорили о вступлении в эру никелевых сверхпроводников. Но возникли проблемы. Во-первых, получение никелатов — чрезвычайно сложный процесс. Во-вторых, эти соединения, хоть и ближе по свойствам к металлам, менее стабильны, чем купраты. Это объясняется тем, что энергетические состояния электронов никеля выше, чем меди, поэтому они активнее вступают в различные взаимодействия.
Эра палладия
В оптимальных ВТСП электроны должны взаимодействовать друг с другом сильнее, чем в купратах, но слабее, чем в никелатах. Физики из Японии и Австрии указали на соединения палладия — палладаты.«Палладий находится на одну строчку ниже никеля в таблице Менделеева, — приводятся в пресс-релизе слова руководителя исследования Карстен Хелд из Института физики твердого тела Венского технического университета. — У палладия в среднем электроны находятся несколько дальше от ядра атома и друг от друга, поэтому электронное взаимодействие между ними слабее».
Наука
8692
08:00 06.06.2023(обновлено: 08:11 06.06.2023)
Зависит от России. Ученые назвали металл будущего
<div data-gtm-vis-recent-on-screen-10468637_142=«25769» data-gtm-vis-first-on-screen-10468637_142=«25769» data-gtm-vis-total-visible-time-10468637_142=«100» data-gtm-vis-has-fired-10468637_142=«1»>© РИА Новости / Павел Лисицын
Перейти в медиабанк
Читать ria.ru в
МОСКВА, 6 июн — РИА Новости, Владислав Стрекопытов. Новое поколение сверхпроводников, которые так нужны во многих высокотехнологичных отраслях, будет на основе соединений палладия, сообщают исследователи. России это выгодно — в стране большая часть мировых запасов этого редкого и дорогого металла, а также почти половина всей его добычи.
Нулевое сопротивление
В 1911-м голландский физик Камерлинг-Оннес обнаружил, что электрическое сопротивление твердой ртути при охлаждении в жидком гелии до 4,1 Кельвина (минус 269 градусов Цельсия) резко падает до нуля. Это был первый официально зафиксированный случай сверхпроводимости.
Вскоре выявили еще несколько сверхпроводников. Температура перехода (Тс) у всех была экстремально низкой, близкой к абсолютному нулю.
В 1986-м сотрудники научного подразделения корпорации IBM Карл Мюллер и Георг Беднорц открыли материал с Тс в 30 Кельвинов — купрат лантана и бария. Им присудили за это Нобелевскую премию по физике.
<div data-gtm-vis-has-fired-10468637_142=«1»>CC BY-SA 4.0 / PJRay /
График открытия сверхпроводящих соединений с 1900 по 2015 год. Голубыми ромбами отмечены купраты
Главная гонка современной физики
В промышленности приборы и провода охлаждают жидким азотом, который закипает при 77 Кельвинах. Сверхпроводники с Тс выше этого значения называют высокотемпературными (ВТСП).
prologopro.ru
РЕКЛАМА
Изготовление медалей Москва
В 1990-х получили целый ряд соединений из группы купратов с Тс 130-150 Кельвинов. Самый известный — BSCCO, или, как его называют физики, «биско», состоящий из слоев оксидов висмута, стронция, меди и чистого кальция.
ВТСП уже применяют в системах передачи энергии без потерь, бесконтактных высокоскоростных поездах, сверхсильных магнитах для ускорителей и термоядерных реакторах, суперпроизводительных микрочипах, сверхточных аппаратах медицинской диагностики, двигателях для межпланетных космических кораблей. Из BSCCO, например, сделаны десятки километров проводов в Большом адронном коллайдере в ЦЕРН.
За все более высокотемпературными сверхпроводниками развернулась настоящая гонка. Сверхпроводимость при комнатной температуре и обычных давлениях могла бы в корне изменить технологии, энергетику. Однако пока ни одного такого соединения не нашли.
Загадка «странных металлов». Ученые открыли новое состояние вещества
9 сентября 2020, 08:00
Купраты, никелаты
Купраты — это сложные соединения на основе оксидов меди, в обычных условиях практически не проводящие электрический ток, то есть изоляторы.
chronolux-rublevka.ru
РЕКЛАМА
Срочный выкуп швейцарских часов
Их выделили в отдельную группу «странных металлов», или сверхпроводящих полуметаллов. Считается, что для описания поведения электронов в них нужно применять квантовые принципы, некоторые исследователи даже видят в купратах особое состояние материи.
Физики Корнельского университета и Института Флэтайрон в Нью-Йорке в 2020-м с помощью квантовых вычислений построили цифровую модель «странных металлов», показав, что купраты — это нечто среднее между классическими металлами с подвижными электронами и диэлектриками, в которых электроны занимают фиксированные позиции.
В 1999-м российский ученый Владимир Анисимов с коллегами предположил, что никелаты — комплексные соединения на основе оксида никеля — также могут обладать высокотемпературной сверхпроводимостью. Действительно, впоследствии обнаружили несколько никельсодержащих ВТСП.
Одно время даже говорили о вступлении в эру никелевых сверхпроводников. Но возникли проблемы. Во-первых, получение никелатов — чрезвычайно сложный процесс. Во-вторых, эти соединения, хоть и ближе по свойствам к металлам, менее стабильны, чем купраты. Это объясняется тем, что энергетические состояния электронов никеля выше, чем меди, поэтому они активнее вступают в различные взаимодействия.
Эра палладия
В оптимальных ВТСП электроны должны взаимодействовать друг с другом сильнее, чем в купратах, но слабее, чем в никелатах. Физики из Японии и Австрии указали на соединения палладия — палладаты.
samolet.ru
РЕКЛАМА
Узнать больше
«Палладий находится на одну строчку ниже никеля в таблице Менделеева, — приводятся в пресс-релизе слова руководителя исследования Карстен Хелд из Института физики твердого тела Венского технического университета. — У палладия в среднем электроны находятся несколько дальше от ядра атома и друг от друга, поэтому электронное взаимодействие между ними слабее».
<div data-gtm-vis-has-fired-10468637_142=«1»>© Инфографика
По электронному взаимодействию палладаты занимают золотую середину между купратами и никелатами
У палладатов идеальная электронная конфигурация для высокотемпературной сверхпроводимости. Построив модель с такими переменными параметрами, как сила взаимодействия электронов, коэффициент заполнения и дисперсия энергии импульса, исследователи определили зону сверхпроводимости в палладатах и наметили два соединения с самой высокой Тс, около 100 Кельвинов: RbSr2PdO3 и (Ba0.5La0.5)2PdO2Cl2.
Авторы работы надеются, что их коллеги-экспериментаторы синтезируют эти материалы и проверят их свойства в лаборатории.
«Результаты вычислений многообещающие, — отмечает профессор Хелд. — Если появится новый класс сверхпроводников, это продвинет вперед все исследования и позволит лучше понять сверхпроводимость в целом».
Для России, располагающей крупнейшими в мире запасами палладия, это хорошая новость. Месторождения находятся в Норильском районе и на Кольском полуострове.
Главная сфера применения палладия — в каталитических нейтрализаторах двигателей внутреннего сгорания автомобилей. Этот металл используют также в электронике, медицине, химической промышленности, при изготовлении ювелирных изделий. Благодаря ВТСП на основе палладатов спрос на него может резко вырасти.
«Это сформирует фактически новую сферу потребления палладия объемом до 100 тонн в год, — отмечает промышленный эксперт, кандидат экономических наук Леонид Хазанов. — Россия способна занять 20-30% мирового рынка ВТСП».
Трудность в том, что палладий очень редкий и дорогой. Цена — две тысячи долларов за унцию (около 31 грамма) и добыча — не миллионы тонн, как у меди и никеля, а 250 в год.
Добавил Игорь Иванов 39114 Игорь Иванов 39114 6 Июня 2023
Комментарии участников:
Ни одного комментария пока не добавлено


Войдите или станьте участником, чтобы комментировать